UMAP on the Galaxy10SDSS dataset

This is an example of using UMAP on the Galaxy10SDSS dataset. The goal of this example is largely to demonstrate the use of supervised learning as an effective tool for visualizing and reducing complex data. In addition, hdbscan is used to classify the processed data.

import numpy as np
import h5py
import matplotlib.pyplot as plt
import umap
import os

# from sklearn.model_selection import train_test_split
import math
import requests

# libraries for clustering
import hdbscan
import sklearn.cluster as cluster
from sklearn.metrics import adjusted_rand_score, adjusted_mutual_info_score

if not os.path.isfile("Galaxy10.h5"):
    url = "http://astro.utoronto.ca/~bovy/Galaxy10/Galaxy10.h5"
    r = requests.get(url, allow_redirects=True)
    open("Galaxy10.h5", "wb").write(r.content)

# To get the images and labels from file
with h5py.File("Galaxy10.h5", "r") as F:
    images = np.array(F["images"])
    labels = np.array(F["ans"])

X_train = np.empty([math.floor(len(labels) / 100), 14283], dtype=np.float64)
y_train = np.empty([math.floor(len(labels) / 100)], dtype=np.float64)
X_test = X_train
y_test = y_train
# Get a subset of the data
for i in range(math.floor(len(labels) / 100)):
    X_train[i, :] = np.array(np.ndarray.flatten(images[i, :, :, :]), dtype=np.float64)
    y_train[i] = labels[i]
    X_test[i, :] = np.array(
        np.ndarray.flatten(images[i + math.floor(len(labels) / 100), :, :, :]),
        dtype=np.float64,
    )
    y_test[i] = labels[i + math.floor(len(labels) / 100)]

# Plot distribution
classes, frequency = np.unique(y_train, return_counts=True)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
plt.bar(classes, frequency)
plt.xlabel("Class")
plt.ylabel("Frequency")
plt.title("Data Subset")
plt.savefig("galaxy10_subset.svg")
# 2D Embedding
## UMAP
reducer = umap.UMAP(
    n_components=2, n_neighbors=20, random_state=42, transform_seed=42, verbose=False
)
reducer.fit(X_train)

galaxy10_umap = reducer.transform(X_train)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
plt.scatter(
    galaxy10_umap[:, 0],
    galaxy10_umap[:, 1],
    c=y_train,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_train,
)
plt.colorbar(boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_2D_umap.svg")
### UMAP - Supervised
reducer = umap.UMAP(
    n_components=2, n_neighbors=15, random_state=42, transform_seed=42, verbose=False
)
reducer.fit(X_train, y_train)

galaxy10_umap_supervised = reducer.transform(X_train)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
plt.scatter(
    galaxy10_umap_supervised[:, 0],
    galaxy10_umap_supervised[:, 1],
    c=y_train,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_train,
)
plt.colorbar(boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_2D_umap_supervised.svg")
### UMAP - Supervised prediction
galaxy10_umap_supervised_prediction = reducer.transform(X_test)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
plt.scatter(
    galaxy10_umap_supervised_prediction[:, 0],
    galaxy10_umap_supervised_prediction[:, 1],
    c=y_test,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_test,
)
plt.colorbar(boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_2D_umap_supervised_prediction.svg")

# cluster the data
labels = hdbscan.HDBSCAN(
    min_samples=10,
    min_cluster_size=10,
).fit_predict(galaxy10_umap_supervised_prediction)
clustered = labels >= 0
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
plt.scatter(
    galaxy10_umap_supervised_prediction[~clustered, 0],
    galaxy10_umap_supervised_prediction[~clustered, 1],
    color=(0.5, 0.5, 0.5),
    alpha=0.5,
)
plt.scatter(
    galaxy10_umap_supervised_prediction[clustered, 0],
    galaxy10_umap_supervised_prediction[clustered, 1],
    c=y_test[clustered],
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_test[clustered],
)
plt.colorbar(boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_2D_umap_supervised_prediction_clustered.svg")

# Print out information on quality of clustering
print("2D Supervised Embedding with Clustering")
print(adjusted_rand_score(y_test, labels), adjusted_mutual_info_score(y_test, labels))

print(
    adjusted_rand_score(y_test[clustered], labels[clustered]),
    adjusted_mutual_info_score(y_test[clustered], labels[clustered]),
)

print(np.sum(clustered) / y_test.shape[0])

# 3D Embedding
## UMAP
reducer = umap.UMAP(
    n_components=3, n_neighbors=20, random_state=42, transform_seed=42, verbose=False
)
reducer.fit(X_train)
galaxy10_umap = reducer.transform(X_train)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
ax = fig.add_subplot(projection="3d")
p = ax.scatter(
    galaxy10_umap[:, 0],
    galaxy10_umap[:, 1],
    galaxy10_umap[:, 2],
    c=y_train,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_train,
)
fig.colorbar(p, ax=ax, boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_3D_umap.svg")
## UMAP - Supervised
reducer = umap.UMAP(
    n_components=3, n_neighbors=20, random_state=42, transform_seed=42, verbose=False
)
reducer.fit(X_train, y_train)
galaxy10_umap_supervised = reducer.transform(X_train)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
ax = fig.add_subplot(projection="3d")
p = ax.scatter(
    galaxy10_umap_supervised[:, 0],
    galaxy10_umap_supervised[:, 1],
    galaxy10_umap_supervised[:, 2],
    c=y_train,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_train,
)
fig.colorbar(p, ax=ax, boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_3D_umap_supervised.svg")
## UMAP - Supervised prediction
galaxy10_umap_supervised_prediction = reducer.transform(X_test)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
ax = fig.add_subplot(projection="3d")
p = ax.scatter(
    galaxy10_umap_supervised_prediction[:, 0],
    galaxy10_umap_supervised_prediction[:, 1],
    galaxy10_umap_supervised_prediction[:, 2],
    c=y_test,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_test,
)
fig.colorbar(p, ax=ax, boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_3D_umap_supervised_prediction.svg")

# cluster the data
labels = hdbscan.HDBSCAN(
    min_samples=10,
    min_cluster_size=10,
).fit_predict(galaxy10_umap_supervised_prediction)
clustered = labels >= 0
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
ax = fig.add_subplot(projection="3d")
q = ax.scatter(
    galaxy10_umap_supervised_prediction[~clustered, 0],
    galaxy10_umap_supervised_prediction[~clustered, 1],
    galaxy10_umap_supervised_prediction[~clustered, 2],
    color=(0.5, 0.5, 0.5),
    alpha=0.5,
)
p = ax.scatter(
    galaxy10_umap_supervised_prediction[clustered, 0],
    galaxy10_umap_supervised_prediction[clustered, 1],
    galaxy10_umap_supervised_prediction[clustered, 2],
    c=y_test[clustered],
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_test[clustered],
)
fig.colorbar(p, ax=ax, boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_3D_umap_supervised_prediction_clustered.svg")

# Print out information on quality of clustering
print("3D Supervised Embedding with Clustering")
print(adjusted_rand_score(y_test, labels), adjusted_mutual_info_score(y_test, labels))

print(
    adjusted_rand_score(y_test[clustered], labels[clustered]),
    adjusted_mutual_info_score(y_test[clustered], labels[clustered]),
)

print(np.sum(clustered) / y_test.shape[0])
# Dimensions 4 to 25
for dimensions in range(4, 26):
    reducer = umap.UMAP(
        n_components=dimensions,
        n_neighbors=20,
        random_state=42,
        transform_seed=42,
        verbose=False,
    )
    reducer.fit(X_train, y_train)
    galaxy10_umap_supervised = reducer.transform(X_train)
    # UMAP - Supervised prediction
    galaxy10_umap_supervised_prediction = reducer.transform(X_test)
    # cluster the data
    labels = hdbscan.HDBSCAN(
        min_samples=10,
        min_cluster_size=10,
    ).fit_predict(galaxy10_umap_supervised_prediction)
    clustered = labels >= 0
    # Print out information on quality of clustering
    print(str(dimensions) + "D Supervised Embedding with Clustering")
    print(
        adjusted_rand_score(y_test, labels), adjusted_mutual_info_score(y_test, labels)
    )
    print(
        adjusted_rand_score(y_test[clustered], labels[clustered]),
        adjusted_mutual_info_score(y_test[clustered], labels[clustered]),
    )
    print(np.sum(clustered) / y_test.shape[0])

Gallery generated by Sphinx-Gallery